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The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious
health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the
spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were
screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp)
enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity
was investigated using molecular docking methods, and the interaction of phytochemicals with the
RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals
of N. sativa screened in this study, a significant docking score was observed for four compounds, namely
a-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report
that a-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best
binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our
results prove that the top four potential phytochemical molecules of N. sativa, especially a-hederin, could
be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and
in vivo testing are required to confirm the findings of this study.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus disease 2019 (COVID-19), caused by the severe
acute respiratory syndrome-coronavirus (SARS-CoV)-2, has
adversely affected the health of people across the globe (Mali
et al., 2020). As of January 16, 2021, there are 92,262,621 con-
firmed cases of COVID-19 worldwide, including 1,995,037 deaths
(https://www.who.int/emergencies/diseases/novel-coronavirus-
2019). SARS-CoV-2 belongs to the Coronaviridae family and is clo-
sely related to the other members of the family, especially SARS-
CoV and the Middle East respiratory syndrome coronavirus
(MERS-CoV) (Hui et al., 2020; Mali et al., 2020). The positive
stranded RNA genome of SARS-CoV-2 is surrounded by a lipid
envelope which contains the spike proteins as well as the mem-
brane proteins. The spike proteins of SARS-CoV-2 bind to the host
rs from
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Table 1
Chemical structures of the main phytochemical compounds of Nigella Sativa and remdesivir (control drug) along with their respective docking scores upon molecular docking
with RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 (PDB ID: 6 M71).

Phytochemical compounds/ligands Molecular weight (g/mol) Chemical structure/PubChem CID Docking Score (kcal/mol)

a- Hederin 750.97 –8.6

Dithymoquinone 328.41 –6.1

Nigellicine 246.27 –6.1

Nigellidine 294.35 –6.0
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Table 1 (continued)

Phytochemical compounds/ligands Molecular weight (g/mol) Chemical structure/PubChem CID Docking Score (kcal/mol)

Nigellimine 203.24 –5.1

Thymohydroquinone 166.22 –4.6

Thymoquinone 164.20 –4.6

Carvacrol 150.22 –4.5

Thymol 150.22 –4.3

Remdesivir 602.6 –7.6
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Fig. 1. Structure of RNA-dependent RNA polymerase (RdRp) (PDB ID: 6 M71) demonstrating the binding of the high affinity phytochemicals to its active site (binding pocket).
Chains A, B, C, and D of RdRp are shown in red, green, tv-green, and lime-green color, respectively, whereas, the ligands, a-hederin, dithymoquinone, negillicine, negillidine,
and remdesivir, are shown in magenta, cyan, yellow, orange, and blue color, respectively.(a) Cartoon representation of RdRp with the phytochemicals bound to its active site.
(b) Magnified view (Cartoon representation) of the active site of RdRp occupied by the phytochemicals. (c) Surface representation of RdRp with the phytochemicals bound to
its active site. (d) Magnified view (Surface representation) of the active site of RdRp occupied by the phytochemicals.
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cell receptors and help the virus release the viral genome into the
host cell where it is translated into two polyproteins and the struc-
tural proteins, and replication of the viral genome is initiated
(V’kovski et al., 2020). The two-third of the RNA genome of
SARS-CoV-2 encodes viral RNA-dependent RNA polymerase
(RdRp), the associated accessory proteins, and the two large non-
structural polyproteins. The remaining one-third of the genome
codes for the four structural proteins (spike, envelope, membrane
and nucleocapsid), and the other helper proteins (Luk et al.,
2019). RdRp is very important for replication and transcription of
the viral genome and is highly conserved among different RNA
viruses. The core protein of RdRp consisting of a single chain of
approximately 900 amino acid residues, shows minimal activity.
However, enhanced activity is achieved by the attachment of addi-
tional key subunits (Ahn et al., 2012; Kirchdoerfer and Ward 2019;
4

Subissi et al., 2014). Being a very essential enzyme in the life cycle
of RNA viruses including SARS-CoV-2, the RdRp has already been
targeted in various viral infections, including the hepatitis C virus,
Zika virus and coronaviruses (Elfiky et al., 2013; Elfiky 2016; Elfiky
2017; Elfiky 2019; Elfiky and Elshemey 2016; Elfiky and Elshemey
2018; Elfiky and Ismail 2017; Elfiky and Ismail 2019; Ganesan and
Barakat 2017). The active site of RdRp has has been reported to be
highly conserved among the different corona viruses (Doublie and
Ellenberger 1998; Elfiky 2020a; Elfiky and Ismail 2018). Therefore,
RdRp is the main drug target for SARS-Cov-2 and other coron-
aviruses (Aftab et al., 2020; Elfiky 2021b; Elfiky 2020b; Yin et al.,
2020).

The virus generally spreads from the infected person through
close contact along with the droplets spilled during talking, cough-
ing and sneezing (Chan et al., 2020). The lack of approved drugs or



Shabir Ahmad Mir, A. Firoz, M. Alaidarous et al. Saudi Journal of Biological Sciences xxx (xxxx) xxx
vaccines for COVID-19 is the main concern of the ongoing pan-
demic. Therefore, developing a promising vaccine or drug interven-
tion is of prime interest and importance in combating this viral
disease (Vardhan and Sahoo 2020). Various efforts are being car-
ried out by the researchers throughout the world for developing
the effective treatment strategy for this infectious disease. As a
result of these continued efforts various clinical interventions are
on trial worldwide. In addition to drug repurposing and synthesis
of new drug molecules, the herbal medicine system has gained glo-
bal emphasis in providing favorable interventions to combat this
pandemic viral disease (Patwardhan et al., 2020; Rastogi et al.,
2020; Elfiky 2021a). One of the herbs, Nigella sativa (also known
as black seed or Prophetic medicine) has been reported to possess
several pharmacological properties including anti-microbial, anti-
inflammatory and immunostimulatory activities (Ahmad et al.,
2013; Molla et al., 2019). N. sativa belongs to the plant family
‘Ranunculaceae’ and its seeds in have been consumed to treat var-
ious diseases and infirmities (Mazaheri et al., 2019; Majeed et al.,
2021; Yimer et al., 2019). Besides its use as a spice and a food
preservative, it has been traditionally used as a protective and
curative remedy for several disorders (Majeed et al., 2021). More-
over, the beneficial effects and safety of N. sativa seeds in different
diseases is well established in the literature (Daryabeygi-
Khotbehsara et al., 2017; He and Xu 2019; Koshak et al., 2017;
Namazi et al., 2018; Sahebkar et al., 2016a; Sahebkar et al.,
2016b; Tavakkoli et al., 2017) . Recently, various studies have high-
lighted the efficacy of N. sativa in the treatment of viral diseases
(Ahmad et al., 2020; Barakat et al., 2013; Bouchentouf et al.,
2020; Dorra et al., 2019; Elfiky, 2021a; Onifade et al., 2013a;
Onifade et al., 2013b; Sekiou 2020). N. sativa has been reported
to inhibit cytomegalovirus, herpes simplex virus, human immun-
odeficiency virus and hepatitis A virus infections (Salem and
Hossain, 2000; Barakat et al., 2010). Some studies in literature have
revealed that N. sativa inhibited growth of influenza virus H5N1
and replication of Hepatitis C virus (Oyero et al., 2016; Dorra
et al., 2019), in addition to decreasing the coronavirus load in
infected HeLa cells (Ulasli et al., 2014). Few studies have also
focused on the in silico screening of its main phytochemicals
against some drug targets of SARS-CoV-2 (Ahmad et al., 2020;
Bouchentouf and Noureddine, 2020; Molla et al., 2019; Maiti
et al., 2020). However, the inhibitory potential of these phyto-
chemicals against the prominent drug target, the RNA-dependent
RNA polymerase of SARS-CoV-2 has not yet been reported. There-
fore, based on some previous studies in literature (Akram Khan and
Afzal, 2016; Ahmad et al., 2020; Bouchentouf et al., 2020; Molla
et al., 2019; Maiti et al., 2020), here we selected the major phyto-
chemicals of N. sativa and screened them for their potential to inhi-
bit the RdRp of SARS-CoV-2 using computer aided molecular
docking methods.
2. Material and methods

2.1. Preparation of RdRp for molecular docking

The crystallographic three-dimensional (3D) structure of the
RdRp (PDB ID: 6 M71) of SARS-CoV-2 was downloaded from the
Research Collaboratory for Structural Bioinformatics (RCSB) Pro-
tein Data Bank (PDB) (http://www.rscb.org) and saved as a PDB file
(.pdb). AutoDock Tools 1.5.7 was used to prepare this target pro-
tein (PDB ID: 6 M71) for in silico molecular docking experiments
(Goodsell and Olson 1990). The water molecules were removed,
polar hydrogen atoms and the Kollman charges were added to
the protein, and saved as a PDBQT file (.pdbqt). A grid box covering
the active site pocket of 6 M71 was generated and the grid param-
5

eters were saved as a TXT file (.txt) for input during docking
(Iheagwam and Rotimi 2020; Vardhan and Sahoo 2020).

2.2. Preparation of ligands

The 3D structures of the main chemical compounds of N. sativa
as well as that of Remdesivir were downloaded as SDF files (.sdf)
from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and converted
to the PDB format (.pdb) using Open Babel graphical user interface
(GUI) tool (O’Boyle et al., 2011). The PDB files of all the ligands
(compounds of N. sativa and the positive control) were prepared
for docking using AutoDock Tools 1.5.7. Ligand preparation
included the addition of gasteiger charges, setting torsion roots
and merging non-polar hydrogens. The prepared ligands were
saved as PDBQT files (.pdbqt) for input during the docking proce-
dure. We did not investigate Lipinski’s physicochemical parame-
ters of the ligands here because this information is already
available in the literature (Ahmad et al., 2020; Bouchentouf and
Noureddine 2020).

2.3. Molecular docking and visualization of the docking complex

The molecular docking of individual ligands into the target pro-
tein was performed using the AutoDock Vina software (Trott and
Olson, 2009). The grid dimensions (Å) for active site- specific dock-
ing were searched from the available literature and fixed at: x
= 28, y = 26, z = 32 (Iheagwam and Rotimi, 2020). The default
exhaustiveness value of 8 was uniformly fixed for all ligands dur-
ing the docking procedure. The known drug candidate, remdesivir
was used as a positive control for docking the RdRp active site.
AutoDock Vina results represent the docking scores as the Gibbs
free energy of binding (DG (kcal/mol)). The Gibbs free energy of
binding (DG) obtained as a result of molecular docking by Auto-
Dock Vina and expressed in kcal/mol represents the efficacy of
ligand binding to the active site of the selected receptor (Ardra
et al., 2020). Further, the output files generated from docking
experiments were converted to protein–ligand complexes using
the PyMOL software (https://pymol.org/2/) (DeLano 2002), and
the interaction of the ligands with the receptor residues was visu-
alized and analyzed using the BioVia Discovery Studio Software
(https://discover.3ds.com/discovery-studio-visualizer-download).

3. Results and discussion

3.1. Molecular docking of the phytochemical compounds of N. Sativa

RdRp is crucial for the replication of SARS-CoV-2 and is there-
fore considered a key target for the development of antiviral drugs
(Aftab et al., 2020; Elfiky 2021b; Elfiky 2020b; Yin et al., 2020).
Recently, several studies have reported the in silico screening of
phytochemicals from N. sativa against different drug targets of
SARS-CoV-2 (Ahmad et al., 2020; Bouchentouf and Noureddine
2020; Maiti et al., 2020; Rajapaksa et al., 2020; Sampangi-
ramaiah 2020; Silva et al., 2020), however, RdRp, an important
drug target has not been included in these studies. Therefore, to fill
the gap, the same strategy has been applied in the current study to
screen the N. sativa phytochemicals for their potential to inhibit
RdRp of SARS-CoV-2.

Our results revealed that out of the total nine compounds of N.
sativa that we screened by in silico analysis, four (a-hederin, dithy-
moquinone, nigellicine and nigellidine) had significant binding
affinity towards the active site of RdRp as indicated by their con-
siderably lower binding energies (DG values less than the cut-off
value of –6 kcal/mol) (Shityakov and Foerster, 2014). a-hederin
possessed the lowest binding energy (DG = –8.6 Kcal/mol) in com-
plex with 6 M71, followed by dithymoquinone (DG = –6.1 kcal/m
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ol), nigellicine (DG = –6.1 kcal/mol) and nigellidine (DG = –6.0 kc
al/mol). The binding affinity (DG = –8.6 Kcal/mol) of a-hederin
was found to be higher than that of remdesivir (–7.6 kcal/mol),
the already known antiviral compound used as a positive control
in this study. The binding energies of the other three compounds
were lower, but close to that of remdesivir (Table 1).
3.2. In silico analysis of the docking complexes and visualization of the
enzyme-ligand interactions

In the current study we have used the recently determined X-
Ray crystal structure of RdRp (PDB ID: 6 M71) for screening the
Fig. 2. Molecular docking analysis revealing the binding positions of the selected
top 4 compounds of Nigella Sativa [a-hederin (a), dithymoquinone (b), nigellicine
(c), nigellidine (d)] and remdesivir (e) to the severe acute respiratory syndrome-
coronavirus-2 (SARS-CoV-2) RdRp (PDB ID: 6 M71; shown as a ribbon structure in
red). Panel A shows the three-dimensional illustration of the interaction of ligands
to the 6 M71 structure and Panel B shows the two-dimensional diagrams displaying
the interactions with specific amino acid residues in the active site. All the ligands
(a-hederin, dithymoquinone, nigellicine, nigellidine, and remdesivir) are shown in
magenta color.

Fig. 3. Molecular dynamic simulations of the RdRp/a-hederin docking complex. (a)
Root mean square deviation (RMSD) profile of the RdRp chain A alone. (b) RMSD
profile of the RdRp chain A/a-hederin complex. (c) Root mean square fluctuations
(RMSF) profile of the RdRp chain A alone (d) RMSF profile of the RdRp chain A/a-
hederin complex.
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selected phytochemicals. According to the available literature,
the key residues of RdRp involved in the interaction include;
Y618, C622, N691, N695, M755, I756, L757, L758, S759, D760,
D761, A762, V763, E811, F812, C813 and S814 (numbering for
PDB ID: 6 M71). The key residues in the active site are D761 and
D762. These are involved in the actual reaction of the RdRp enzyme
(Elfiky 2021b; Elfiky 2020b;Yin et al., 2020). We used the RdRp
holoenzyme for the initial screening of the selected phytochemi-
cals. The structure of RdRp (PDB ID: 6 M71) and the binding of
high-affinity phytochemicals/ligands to its active site is shown in
Fig. 1. The 3D and 2D visualization of the interaction of the top four
phytochemicals of N. sativa with the active site residues of RdRp is
shown in Fig. 2. The phytochemicals a-hederin and negillicine
interacted with the active site residues through four and three con-
ventional hydrogen bonds, respectively, whereas the other two
phytochemicals, dithymoquinone and negillidine interacted with
the active site residues through two and one hydrogen bonds,
respectively. There are also some non-bonded interactions, such
as van der Waals forces, pi-alkyl, pi-cation, etc., between the phy-
tochemicals and active site amino acid residues of RdRp as
depicted in the 2D illustration (Fig. 2). The control drug, remdesivir
is a nucleotide analog that binds to RdRp in a similar manner as a
nucleotide does, thereby inhibiting viral RdRp activity through
RNA chain termination. The interaction of various active site amino
acid residues of RdRp with remdesivir is available in the literature
(Elfiky 2020b; Yin et al., 2020). In the present study, we observed
that upon in silico screening of the selected phytochemicals, the
top four compounds (a-hederin, dithymoquinone, negillicine and
negillidine), especially a-hederin efficiently bound to the binding
pocket of RdRp and interacted with one or more interacting resi-
dues present in the RNA binding tunnel of RdRP (Fig. 2) which
might lead to the inhibition of its activity. Our results support
those of earlier studies and suggest that N. sativa and its phyto-
chemicals are worth studying further and could be recommended
as an antiviral herbal supplement against COVID-19.

Based on its lowest docking energy on docking with RdRp (PDB
ID: 6 M71) and its efficient interaction with the active site residues
of 6 M71, we report here a-hederin as the most potent inhibitor of
SARS-CoV-2 RdRp, among the nine compounds screened in this
study. For further confirmation, we docked the top-ranked phyto-
chemicals (a-hederin, dithymoquinone, negillicine and negillidine)
with a single chain of RdRp (Chain A, the core enzyme). We
observed that a-hederin, dithymoquinone, negillidine and negilli-
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cine bind into the active site of RdRp (Chain A) with a docking score
of –8.6, –6.7, –6.6 and –6.1 kcal/mol, respectively. The stability of
the docking complex of the top-ranked compound (a-hederin)
was confirmed by molecular dynamic simulation using the Molec-
ular Dynamics on Web (MDWEB) server (https://mmb.irb-
barcelona.org/MDWeb/) and CABS flex server (http://212.87.3.12/
CABSflex2/index) as shown in Fig. 3.

4. Conclusion

In this in silico study, we identified four phytochemicals from N.
sativa that have the potential to inhibit the RdRp of SARS-CoV-2. Of
the four compounds, a-hederin, dithymoquinone, negillicine, and
negillidine, a-hederin had the highest binding affinity towards
the active site residues of RdRp. Our docking results prove that
the top four potential phytochemical molecules of N. sativa, espe-
cially a-hederin, could be considered for ongoing drug develop-
ment strategies against SARS-CoV-2. However, further in vitro,
in vivo, and clinical studies are warranted to establish the compre-
hensive pharmacological roles of these phytochemicals. Our study
also supports the available literature regarding the traditional use
of N. sativa to prevent viral diseases.
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